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Abstract
In this paper, we apply the concept of s-norm S to fuzzy structure of B-algebras. The notion of an anti fuzzy B-subalgebra

and an anti fuzzy normal B-subalgebra with respect to s-norm are introduced and several related properties are investigated. The
union and direct sum of them are defined and investigated. Finally, by using B-homomorphisms of B-algebras, characterizations
of them are given.
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1. Introduction

Neggers and Kim [7, 8] introduced a new notion, called a B-algebras which is related to several classes
of algebras. The concept of a fuzzy set, which was introduced by Zadeh in his definitive paper [19] of
1965, was applied by many researchers to generalize some of the basic concepts of algebras. The fuzzy
algebraic structures play a vital role in Mathematics with wide applications in many other branches such as
theoretical physics, computer sciences, control engineering, information sciences, coding theory, topological
spaces, logic, set theory, real analysis, measure theory etc. In 2002, Jun et al. [5] applied the concept of fuzzy
sets to B-algebras. In 2003, Ahn and Bang [2] discussed some results on fuzzy subalgebras in B-algebras.
Saeid introduced the notion of fuzzy topological B-algebras [17]. Norms are operations which generalize the
logical disjunction to fuzzy logic. Senapati et al. [18] investigated fuzzy subalgebras of B-algebras under
t-norms. In previous works [9, 10, 11, 12, 13, 14, 15, 16], by using norms, we investigated some properties
of fuzzy algebraic structures. In this paper, we introduce the conceps of anti fuzzy B-subalgebras and anti
fuzzy normal B-subalgebras with respect to s-norms and discuss the level B-subalgebras. Next we state and
prove some theorems which determine the relationship between these notions and B-subalgebras and we
consider characterizations of them. Also we define union and direct sum of them and investigate related
topics. Finally, we define images and inverse images of them and we study how the homomorphic images
and inverse images of them under B-homomorphisms of B-algebras become anti fuzzy B-subalgebras and
anti fuzzy normal B-subalgebras with respect to s-norms, respectively.
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2. Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the sequal.

Definition 2.1. (See [5]) A B-algebra is a non-empty set X with a constant 0 and a binary operation ∗
satisfying the following axioms:
(1) x ∗ x = 0,
(2) x ∗ 0 = x,
(3) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))
for all x,y, z ∈ X. A partial ordering ⩽ on X can be defined by x ⩽ y if and only if x ∗ y = 0. A non-empty
subset N of a B-algebra X is called a B-subalgebra of X if x ∗ y ∈ N for any x,y ∈ N. A non-empty subset
N of a B-algebra X is said to be normal if (x ∗ a) ∗ (y ∗ b) ∈ N whenever x ∗ y ∈ N and a ∗ b ∈ N. Note
that any normal subset N of a B-algebra X is a B-subalgebra of X, but the converse need not be true. A
non-empty subset N of a B-algebra X is called a normal B-subalgebra of X if it is both a B-subalgebra and
normal

Example 2.2. (See [5]) Let X be the set of all real numbers except for a negative integer −n. Define a binary
operation ∗ on X by

x ∗ y =
n(x− y)

n+ y
.

Then (X; ∗, 0) is a B-algebra.

Example 2.3. (See [5]) Let Z be the group of integers under usual addition and let α /∈ Z. We adjoin the
special element α to Z. Let X = Z ∪ α. Define α+ 0 = α, α+n = n− 1 where n ̸= 0 in Z and iα+ α an
arbitrary element in X. Define a mapping φ : X → X by φ(α) = 1,φ(n) = −n where n ∈ Z. If we define a
binary operation ∗ on X by x ∗ y = x+φ(y), then (X; ∗, 0) is a non-group derived B-algebra.

Lemma 2.4. (See [5]) If X is a B-algebra, then x = 0 ∗ (0 ∗ x) for all x ∈ X.

Definition 2.5. (See [3]) A mapping f : (X; ∗, 0) → (Y; ∗́, 0́) of B-algebras is called a B-homomorphism if
f(x ∗ y) = f(x)∗́f(y), for all x,y ∈ X. The zero mapping θ : (X; ∗, 0) → (Y; ∗́, 0́) of B-algebras with θ(0) = 0́
is a B-homomorphism.

Definition 2.6. (See [4]) Let X be an arbitrary set. A fuzzy subset of X, we mean a function from X into
[0, 1]. The set of all fuzzy subsets of X is called the [0, 1]-power set of X and is denoted [0, 1]X. For a fixed
t ∈ [0, 1], the set µt = {x ∈ X : µ(x) ⩽ t} is called a lower level of µ.

Definition 2.7. (See [9]) Let φ be a function from set X into set Y such that µ : X → [0, 1] and ν : Y → [0, 1].
For all x ∈ X,y ∈ Y, we define φ(µ)(y) = inf{µ(x) | x ∈ X,φ(x) = y} and φ−1(ν)(x) = ν(φ(x)).

Definition 2.8. (See [4]) An s-norm S is a function S : [0, 1] × [0, 1] → [0, 1] having the following four
properties:
(1) S(x, 0) = x,
(2) S(x,y) ⩽ S(x, z) if y ⩽ z,
(3) S(x,y) = S(y, x),
(4) S(x,S(y, z)) = S(S(x,y), z) ,
for all x,y, z ∈ [0, 1].

We say that S is idempotent if for all x ∈ [0, 1],S(x, x) = x.

Example 2.9. (See [4]) The basic s-norms are Sm(x,y) = max{x,y},Sb(x,y) = min{1, x+ y} and Sp(x,y) =
x+ y− xy for all x,y ∈ [0, 1].
Sm is standard union, Sb is bounded sum, Sp is algebraic sum.
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Definition 2.10. (See [6]) The function Sn :
∏

i=1[0, 1] → [0, 1] is defined by

Sn(x1, x2, ..., xn) = S(xi,Sn−1(x1, x2, ..., xi−1, xi+1, ..., xn))

for all 1 ⩽ i ⩽ n, where n ⩾ 2 such that S2 = S and S1 = id (identity).
Using the induction on n, we have the following two lemmas.

Lemma 2.11. (See [6]) For every s-norm S and every xi,yi ∈ [0, 1], where 1 ⩽ i ⩽ n, and n ⩾ 2, we have

Sn(S(x1,y1),S(x2,y2), ..., S(xn,yn)) = S(Sn(x1, x2, ..., xn),Sn(y1,y2, ...,yn)).

Lemma 2.12. (See [6]) For a s-norm S and every x1, x2, ..., xn ∈ [0, 1], where n ⩾ 2, we have

Sn(x1, x2, ..., xn) = S(...S(S(S(x1, x2), x3), x4), xn) = S(x1,S(x2,S(x3, ...S(xn−1, xn)...)))

Definition 2.13. (See [9]) Let µ,ν : X → [0, 1] and S be a s-norm. We define the intersection of µ and ν as

µ∪ ν : X → [0, 1]

by
(µ∪ ν)(x) = S(µ(x),ν(x))

for all x ∈ X.
Let µ : X → [0, 1] and ν : Y → [0, 1] and S be a s-norm. The direct sum of µ and ν is denoted by

µ⊕ ν : X⊕ Y → [0, 1]

is defined by
(µ⊕ ν)(x,y) = S(µ(x),ν(y))

for all (x,y) ∈ X⊕ Y.
Lemma 2.14. (See [1]) Let S be a s-norm. Then

S(S(x,y),S(w, z)) = S(S(x,w),S(y, z))

for all x,y,w, z ∈ [0, 1].

3. Anti fuzzy B-algebras under s-norms

Definition 3.1. Let X be a B-algebra. Define µ : X → [0, 1] an anti fuzzy B-algebra under t-norm T if it
satisfies the following inequalities:

µ(x ∗ y) ⩽ S(µ(x),µ(y))

for all x,y ∈ X.
Denote by AFBS(X), the set of all anti fuzzy B-algebras of B-algebra X under s-norm S.
Example 3.2. Let X = {0, 1, 2} be a set given by the following Cayley table:

* 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Then (X, ∗, 0) is a B-algebra. Define µ : X → [0, 1] as

µ(x) =


0.35 if x = 0,
0.45 if x = 1,
0.55 if x = 2,

Let S(a,b) = Sp(a,b) = a+ b− ab for all a,b ∈ [0, 1] then µ ∈ AFBS(X).
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Proposition 3.3. Let µ ∈ AFBS(X) and S be idempotent. Then µ(0) ⩽ µ(x) for all x ∈ X.

Proof. Let x ∈ X and then µ(0) = µ(x ∗ x) ⩽ S(µ(x),µ(x)) = µ(x).

Proposition 3.4. Let µ ∈ AFBS(X). Then
(1) µ(0 ∗ x) = µ(x),
(2) µ(x ∗ (0 ∗ y)) ⩽ S(µ(x),µ(y)),
for all x,y ∈ X.

Proof. Let x,y ∈ X. Then
(1)

µ(0 ∗ x) ⩽ S(µ(0),µ(x)) ⩽ S(µ(x),µ(x)) = µ(x) = µ(0 ∗ (0 ∗ x)) ⩽ S(µ(0),µ(0 ∗ x)) = µ(0 ∗ x)
thus µ(0 ∗ x) = µ(x).
(2)

µ(x ∗ (0 ∗ y)) ⩽ S(µ(x),µ(0 ∗ y)) = S(µ(x),µ(y)).

Proposition 3.5. If a fuzzy set µ in X satisfies (1) and (2) in Proposition 3.4, then µ ∈ AFBS(X).

Proof. Let x,y ∈ X. Then

µ(x ∗ y) = µ(x ∗ (0 ∗ (0 ∗ y))) ⩽ S(µ(x),µ(0 ∗ (0 ∗ y))) = S(µ(x),µ(0 ∗ y)) = S(µ(x),µ(y))

so µ(x ∗ y) ⩽ S(µ(x),µ(y)) then µ ∈ AFBS(X).

Proposition 3.6. Let µ : X → [0, 1] be a fuzzy set and S be idempotent s-norm. If µ ∈ AFBS(X), then the set

µt = {x ∈ X : µ(x) ⩽ t}

is either empty or subalgebra of B-algebra X for every t ∈ [0, 1].

Proof. Let µ ∈ AFBS(X) and µt = {x ∈ X : µ(x) ⩽ t} be not empty and x,y ∈ µt. Then µ(x) ⩽ t and
µ(y) ⩽ t such that

µ(x ∗ y) ⩽ S(µ(x),µ(y)) ⩽ S(t, t) = t

which means that x ∗ y ∈ µt and so the set µt will be subalgebra of B-algebra X for every t ∈ [0, 1].

Example 3.7. Let X = {0, 1, 2, 3, 4, 5} be a set given by the following Cayley table:

* 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X, ∗, 0) is a B-algebra. Define
µ : X → [0, 1]

as

µ(x) =



0.16 if x = 0,
0.25 if x = 1,
0.34 if x = 2,
0.43 if x = 3,
0.52 if x = 4,
0.61 if x = 5,



R. Rasuli, Commun. Combin., Cryptogr. & Computer Sci., 1 (2023), 61–74 65

Let S(a,b) = Sp(a,b) = a+ b− ab for all a,b ∈ [0, 1] then µ ∈ AFBS(X).
Let t = 0.4 then

µ0.4 = {x ∈ X : µ(x) ⩽ 0.4} = {0, 1, 2}

with the following Cayley table:

* 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

so µ0.4 will be subalgebra of B-algebra X.

Proposition 3.8. Any subalgebra of a B-algebra X can be realized as a level subalgebra of some AFBS(X).

Proof. Let A be a subalgebra of a given B-algebra X and let µ : X → [0, 1] be a fuzzy subalgebra defined by

µ(x) =

{
t, if x ∈ A

1, if x /∈ A,

such that t ∈ (0, 1) is fixed. It is clear that µt = A. We must prove that µ ∈ AFBS(X).
If x,y ∈ A, then x ∗ y ∈ A and hence µ(x) = µ(y) = µ(x ∗ y) = t which means that

µ(x ∗ y) = t ⩽ t = S(t, t) = S(µ(x),µ(y))

and so µ ∈ AFBS(X).
If If x,y /∈ A, then µ(x) = µ(y) = 1 which implies that

µ(x ∗ y) ⩽ 1 = S(1, 1) = S(µ(x),µ(y))

and then µ ∈ AFBS(X).
If x ∈ A and y /∈ A, then µ(x) = t < 1 = µ(y) therefore

µ(x ∗ y) = 1 ⩽ 1 = µ(y) = S(µ(x),µ(y))

so µ ∈ AFBS(X).

Proposition 3.9. Let µ1,µ2 ∈∈ AFBS(X). Then µ1 ∪ µ2 ∈∈ AFBS(X).

Proof. Let x,y ∈ X. Then

(µ1 ∪ µ2)(x ∗ y) = S(µ1(x ∗ y),µ2(x ∗ y))
⩽ S(S(µ1(x),µ1(y)),S(µ2(x),µ2(y)))

= S(S(µ1(x),µ2(x)),S(µ1(y),µ2(y)))

= S((µ1 ∪ µ2)(x), (µ1 ∪ µ2)(y))

which means that µ1 ∪ µ2 ∈ AFBS(X).

Example 3.10. Let X = {0, 1, 2, 3} be a set given by the following Cayley table:
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* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 1
3 3 0 0 0

Then (X, ∗, 0) is a B-algebra. Define
µ : X → [0, 1]

as

µ(x) =


0.15 if x = 0,
0.25 if x = 1,
0.35 if x = 2,
0.45 if x = 3,

and
ν : X → [0, 1]

as

ν(x) =


0.1 if x = 0,
0.3 if x = 1,

0.35 if x = 2,
0.55 if x = 3,

Let S(a,b) = Sm(a,b) = max{a,b} for all a,b ∈ [0, 1]. Then µ,ν ∈ AFBS(X). Also

µ∪ ν : X → [0, 1]

as

(µ∪ ν)(x) = S(µ(x),ν(x)) = Sm(µ(x),ν(x)) = max{µ(x),ν(x)} =


0.15 if x = 0,
0.3 if x = 1,

0.35 if x = 2,
0.55 if x = 3,

so µ∪ ν ∈ AFBS(X).

Corollary 3.11. Let µi ⊆ AFBS(X) for i = 1, 2, 3, 4, ...,n. Then ∪i=1,2,3,...,nµi ∈ AFBS(X).

Proposition 3.12. Let µ ∈ AFBS(X) and S be idempotent s-norm. Then

A = {x ∈ X : µ(x) = µ(0)}

will be a subalgebra of X.

Proof. Let x,y ∈ A then µ(x) = µ(0) = µ(y). As µ ∈ AFBS(X) so

µ(x ∗ y) ⩽ S(µ(x),µ(y)) = S(µ(0),µ(0)) = µ(0) ⩽ µ(x ∗ y)

thus µ(x ∗ y) = µ(0) and then x ∗ y ∈ A thus A will be a subalgebra of X.

As is well known, the anti characteristic function of a set is a special fuzzy set. Suppose A is a non-empty
subset of X. By χA we denote the anti characteristic function of A , that is,

χA(x) =

{
0, if x ∈ A

1, if x /∈ A.

Proposition 3.13. Let S be idempotent s-norm. Then A is a B-subalgebra of X if and only if χA ∈ AFBS(X).
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Proof. Let x,y ∈ X.
(1) If x,y ∈ A, then x ∗ y ∈ A and then χA(x) = χA(y) = χA(x ∗ y) = 0. Thus

χA(x ∗ y) = 0 ⩽ 0 = S(0, 0) = S(χA(x),χA(y)).

(2) If x,y /∈ A, then χA(x) = χA(y) = 1. Thus

χA(x ∗ y) ⩽ 1 = S(1, 1) = S(χA(x),χA(y)).

(3) If x ∈ A and y /∈ A, then χA(x) = 0 and χA(y) = 1. Then

χA(x ∗ y) ⩽ 1 = S(0, 1) = S(χA(x),χA(y)).

(4) If x /∈ A and y ∈ A, then χA(x) = 1 and χA(y) = 0. So

χA(x ∗ y) ⩽ 1 = S(1, 0) = S(χA(x),χA(y)).

Therefore (1)-(4) give us that χA ∈ AFBS(X).
Conversely, let χA ∈ AFBS(X) and x,y ∈ A. Then χA(x) = χA(y) = 0 Thus

χA(x ∗ y) ⩽ S(χA(x),χA(y)) = S(0, 0) = 0

so χA(x ∗ y) = 0 which means that x ∗ y ∈ A and thus A will be a B-subalgebra of X.

Proposition 3.14. Let µ ∈ AFBS(X) and ν ∈ AFBS(Y). Then µ⊕ ν ∈ AFBS(X⊕ Y).

Proof. Let (x1,y1), (x2,y2) ∈ X⊕ Y. Then

(µ⊕ ν)((x1,y1) ∗ (x2,y2)) = (µ⊕ ν)(x1 ∗ x2,y1 ∗ y2)

= S(µ(x1 ∗ x2),ν(y1 ∗ y2))

⩽ S(S(µ(x1),µ(x2)),S(ν(y1),ν(y2)))

= S(S(µ(x1),ν(y1)),S(µ(x2),ν(y2)))

= S((µ⊕ ν)(x1,y1), (µ⊕ ν)(x2,y2))

thus
(µ⊕ ν)((x1,y1) ∗ (x2,y2)) ⩽ S((µ⊕ ν)(x1,y1), (µ⊕ ν)(x2,y2))

and so µ⊕ ν ∈ AFBS(X⊕ Y).

Example 3.15. Let X = {0, 1, 2} be a set given by the following Cayley table:

* 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

and Y = {0, 1, 2} be a set given by the following Cayley table:

* 0 1 2
0 0 1 0
1 1 0 1
2 0 1 0
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Then (X, ∗, 0) and (Y, ∗, 0) will be two B-algebras. Define

µ : X → [0, 1]

as

µ(x) =


0.15 if x = 0,
0.25 if x = 1,
0.35 if x = 2,

and
ν : Y → [0, 1]

as

ν(y) =


0.1 if y = 0,
0.2 if y = 1,
0.3 if y = 2.

Let S(a,b) = Sb(a,b) = min{1,a+ b} for all a,b ∈ [0, 1]. Then µ ∈ AFBS(X) and ν ∈ AFBS(Y). Now

µ⊕ ν : X⊕ Y = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} → [0, 1]

as

(µ⊕ ν)(x,y) = S(µ(x),ν(y))
= min{1,µ(x) + ν(y)}

=



0.25 if (x,y) = (0, 0)
0.35 if (x,y) = (0, 1)
0.45 if (x,y) = (0, 2)
0.35 if (x,y) = (1, 0)
0.45 if (x,y) = (1, 1)
0.55 if (x,y) = (1, 2)
0.45 if (x,y) = (2, 0)
0.45 if (x,y) = (2, 1)
0.65 if (x,y) = (2, 2)

thus µ⊕ ν ∈ AFBS(X⊕ Y).

Proposition 3.16. Let µi ∈ AFBS(Xi), where 1 ⩽ i ⩽ n, then

µ = ⊕n
i=1µi ∈ AFBS(⊕n

i=1Xi = X)

such that
µ(x) = (⊕n

i=1µi)(x1, x2, ..., xn) = Sn(µ1(x1,µ2(x2, ...,µn(xn))

for all x = (x1, x2, ..., xn) ∈ X.

Proposition 3.17. If µ ∈ AFBS(X) and φ : (X; ∗, 0) → (Y; ∗́, 0́) be an epimorphic B-homomorphism of
B-algebras, then φ(µ) ∈ AFBS(Y).

Proof. Let xi ∈ X and yi ∈ Y with φ(xi) = yi and i = 1, 2. Then

φ(µ)(y1∗́y2) = inf{µ(x1 ∗ x2) | x1 ∗ x2 ∈ X,φ(x1 ∗ x2) = y1∗́y2}

⩽ inf{S(µ(x1),µ(x2)) | xi ∈ X,φ(xi) = yi}

= S(inf{µ(x1) | x1 ∈ X,φ(x1) = y1}, inf{µ(x2) | x2 ∈ X,φ(x2) = y2})

= S(φ(µ)(y1),φ(µ)(y2))
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thus
φ(µ)(y1∗́y2) ⩽ S(φ(µ)(y1),φ(µ)(y2)).

Thus φ(µ) ∈ AFBS(Y).

Proposition 3.18. If ν ∈ AFBS(Y) and φ : (X; ∗, 0) → (Y; ∗́, 0́) be a B-homomorphism of B-algebras, then
φ−1(ν) ∈ AFBS(X).

Proof. Let x1, x2 ∈ X.

φ−1(ν)(x1 ∗ x2)) = ν(φ(x1 ∗ x2))

= ν(φ(x1) ∗φ(x2))

⩽ S(ν(φ(x1),ν(φ(x2))

= S(φ−1(ν)(x1)),φ−1(ν)(x2))

then
φ−1(ν)(x1 ∗ x2)) ⩽ S(φ−1(ν)(x1)),φ−1(ν)(x2)).

Therefore φ−1(ν) ∈ AFBS(X).

Example 3.19. Let X = {0, 1, 2, 3, 4, 5} and Y = {0, 1, 2, 3} be two sets given by the following Cayley tables:

* 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

and

* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 1
3 3 0 0 0

then (X, ∗, 0) and (Y, ∗, 0) will be two B-algebras. Define µ : X → [0, 1] as

µ(x) =


0.15 if x = 0, 1,
0.25 if x = 2, 3,
0.35 if x = 4,
0.65 if x = 5.

and ν : Y → [0, 1] as

ν(y) =


0.25 if y = 0,
0.45 if y = 1, 2,
0.35 if y = 3,
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Let S(a,b) = Sp(a,b) = a+ b− ab for all a,b ∈ [0, 1] then µ ∈ AFBS(X) and ν ∈ AFBS(Y).
Define B-homomorphism φ : X → Y as

φ(x) =


0 if x = 0, 1,
1 if x = 2,
2 if x = 3,
3 if x = 4, 5,

then we get that φ(µ) : Y → [0, 1] as

φ(µ)(y) = inf{µ(x) | x ∈ X,φ(x) = y} =


0.15 if y = 0,
0.25 if y = 1, 2,
0.35 if y = 3,

and thus φ(µ) ∈ AFBS(Y). Also we will have that φ−1(ν) : X → [0, 1] as

φ−1(ν)(x) = ν(φ(x)) =


0.25 if x = 0, 1,
0.45 if x = 2, 3,
0.35 if x = 4, 5,

therefore φ−1(ν) ∈ AFBS(X).

4. Anti fuzzy normal B-algebras under s-norms

Definition 4.1. Let X be a B-algebra. Define µ : X → [0, 1] an anti fuzzy normal B-algebra under s-norm S

if it satisfies the following inequalities:

µ((x ∗ a) ∗ (y ∗ b)) ⩽ S(µ(x ∗ y),µ(a ∗ b))

for all x,y,a,b ∈ X.
Denote by AFNBS(X), the set of all anti fuzzy normal B-algebras of B-algebra X under s-norm S.

Example 4.2. Let X = {0, 1, 2, 3} be a set given by the following Cayley table:

* 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

Then (X, ∗, 0) is a B-algebra. Define µ : X → [0, 1] as

µ(x) =


0.4 if x = 0,
0.5 if x = 1,
0.6 if x = 2,
0.7 if x = 3.

Let S(a,b) = Sb(a,b) = min{1,a+ b} for all a,b ∈ [0, 1] then µ ∈ AFNBS(X).

Now we prove that every anti fuzzy normal B-algebra will be anti fuzzy B-algebra(under s-norm S).

Proposition 4.3. If µ ∈ AFNBS(X). Then µ ∈ AFBS(X).
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Proof. Let x,y ∈ X. Then

µ(x ∗ y) = µ((x ∗ y) ∗ (0 ∗ 0)) ⩽ S(µ(x ∗ 0),µ(y ∗ 0)) = S(µ(x),µ(y))

then µ ∈ AFBS(X).

Remark 4.4. The converse of Proposition 4.3 is not true. For example, let X = {0, 1, 2, 3, 4, 5} be a set given
by the following Cayley table:

* 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X, ∗, 0) is a B-algebra. Define µ : X → [0, 1] as

µ(x) =

{
0.1 if x = 0, 3
0.7 if x = 1, 2, 4, 5.

Let S(a,b) = Sm(a,b) = max{a,b} for all a,b ∈ [0, 1] then µ ∈ AFBS(X). But since

µ((2 ∗ 5) ∗ (4 ∗ 1)) = µ(2) = 0.7 ≰ S(µ(2 ∗ 4),µ(5 ∗ 1)) = S(µ(2),µ(2)) = S(0.1, 0.1) = 0.1

thus µ /∈ AFNBS(X).

Proposition 4.5. Let µ ∈ AFNBS(X). Then µ(x ∗ y) = µ(y ∗ x) for all x,y ∈ X.

Proof. Let x,y ∈ X. Then

µ(x ∗ y) = µ((x ∗ y) ∗ (x ∗ x))
⩽ S(µ(x ∗ x),µ(y ∗ x))
= S(µ(0),µ(y ∗ x))
= µ(y ∗ x)
= µ((y ∗ x) ∗ (y ∗ y))
⩽ S(µ(y ∗ y),µ(x ∗ y))
= S(µ(0),µ(x ∗ y))
= µ(x ∗ y)

then µ(x ∗ y) = µ(y ∗ x).

Proposition 4.6. Let µ ∈ AFNBS(X) and S be idempotent s-norm. Then

N = {x ∈ X : µ(x) = µ(0)}

will be a normal subalgebra of X.

Proof. Let x,y,a,b ∈ X. If x ∗ y ∈ N and a ∗ b ∈ N, then µ(x ∗ y) = µ(a ∗ b) = µ(0). As µ ∈ AFNBS(X) so

µ((x ∗ a) ∗ (y ∗ b)) ⩽ S(µ(x ∗ y),µ(a ∗ b)) = S(µ(0),µ(0)) = µ(0) ⩽ µ((x ∗ a) ∗ (y ∗ b))

thus µ((x ∗ a) ∗ (y ∗ b)) = µ(0) and then (x ∗ a) ∗ (y ∗ b) ∈ N thus N will be a normal subalgebra of X.
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Proposition 4.7. Let µ : X → [0, 1] be a fuzzy set and S be idempotent s-norm. If µ ∈ AFNBS(X), then the
set

µt = {x ∈ X : µ(x) ⩽ t}

is either empty or normal subalgebra of B-algebra X for every t ∈ [0, 1].

Proof. Let µ ∈ AFNBS(X) and µt = {x ∈ X : µ(x) ⩽ t} be not empty and x ∗y,a ∗b ∈ µt. Then µ(x ∗y) ⩽ t

and µ(a ∗ b) ⩽ t such that

µ((x ∗ a) ∗ (y ∗ b)) ⩽ S(µ(x ∗ y),µ(a ∗ b)) ⩽ S(t, t) = t

which means that (x ∗ a) ∗ (y ∗ b) ∈ µt. Hence µt is normal subalgebra of B-algebra X for every t ∈ [0, 1],
which proves the proposition.

Proposition 4.8. Let µ ∈ AFNBS(X) and ν ∈ AFNBS(X). Then µ∪ ν ∈ AFNBS(X).

Proof. Let x,y,a,b ∈ X. As

(µ∪ ν)((x ∗ a) ∗ (y ∗ b)) = S(µ((x ∗ a) ∗ (y ∗ b)),ν((x ∗ a) ∗ (y ∗ b)))
⩽ S(S(µ(x ∗ y),µ(a ∗ b)),S(ν(x ∗ y),ν(a ∗ b)))
= S(S(µ(x ∗ y),ν(x ∗ y)),S(ν(a ∗ b),ν(a ∗ b)))
= S((µ∪ ν)(x ∗ y), (µ∪ ν)(a ∗ b))

so
(µ∪ ν)((x ∗ a) ∗ (y ∗ b)) ⩽ S((µ∪ ν)(x ∗ y), (µ∪ ν)(a ∗ b)).

Then µ∪ ν ∈ AFNBS(X).

Proposition 4.9. Let µ ∈ AFNBS(X) and ν ∈ AFNBS(Y). Then µ⊕ ν ∈ AFNBS(X⊕ Y).

Proof. Let (x1, x2), (y1,y2), (a1,a2), (b1,b2) ∈ X⊕ Y. Then

(µ⊕ ν)(((x1, x2) ∗ (a1,a2)) ∗ ((y1,y2) ∗ (b1,b2)))

= (µ⊕ ν)((x1 ∗ a1, x2 ∗ a2) ∗ (y1 ∗ b1,y2 ∗ b2))

= (µ⊕ ν)((x1 ∗ a1) ∗ (y1 ∗ b1), (x2 ∗ a2) ∗ (y2 ∗ b2))

= S(µ((x1 ∗ a1) ∗ (y1 ∗ b1)),ν((x2 ∗ a2) ∗ (y2 ∗ b2)))

⩽ S(S(µ(x1 ∗ y1),µ(a1 ∗ b1)),S(ν(x2 ∗ y2),ν(a2 ∗ b2)))

= S(S(µ(x1 ∗ y1),ν(x2 ∗ y2)),S(µ(a1 ∗ b1),ν(a2 ∗ b2)))

= S((µ⊕ ν)(x1 ∗ y1, x2 ∗ y2), (µ⊕ ν)(a1 ∗ b1,a2 ∗ b2))

= S((µ⊕ ν)((x1, x2) ∗ (y1,y2)), (µ⊕ ν)((a1,a2) ∗ (b1,b2)))

and so

(µ⊕ν)(((x1, x2) ∗ (a1,a2)) ∗ ((y1,y2) ∗ (b1,b2))) ⩽ S((µ⊕ν)((x1, x2) ∗ (y1,y2)), (µ⊕ν)((a1,a2) ∗ (b1,b2))).

Thus µ⊕ ν ∈ AFNBS(X⊕ Y).
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Proposition 4.10. Let µi ∈ AFNBS(Xi), where 1 ⩽ i ⩽ n, then

µ = ⊕n
i=1µi ∈ AFNBS(⊕n

i=1Xi = X)

such that
µ(x) = (⊕n

i=1µi)(x1, x2, ..., xn) = Sn(µ1(x1,µ2(x2, ...,µn(xn))

for all x = (x1, x2, ..., xn) ∈ X.

Proposition 4.11. If µ ∈ AFNBS(X) and φ : (X; ∗, 0) → (Y; ∗́, 0́) be an epimorphic B-homomorphism of
B-algebras, then φ(µ) ∈ AFNBS(Y).

Proof. Let xi ∈ X and yi ∈ Y with φ(xi) = yi and i = 1, 2, 3, 4. Then

φ(µ)((y1∗́y2)∗́(y3∗́y4)) = inf{(µ(x1 ∗ x2) ∗ (x3 ∗ x4)) | xi ∈ X,φ(xi) = yi}

⩽ inf{S(µ(x1 ∗ x3),µ(x3 ∗ x4)) | xi ∈ X,φ(xi) = yi}

= S(inf{µ(x1 ∗ x3) | xi ∈ X,φ(xi) = yi}, inf{µ(x2 ∗ x4) | xi ∈ X,φ(xi) = yi})

= S(φ(µ)((y1∗́y3)),φ(µ)((y2∗́y4)))

thus
φ(µ)((y1∗́y2)∗́(y3∗́y4)) ⩽ S(φ(µ)((y1∗́y3)),φ(µ)((y2∗́y4))).

Thus φ(µ) ∈ AFNBS(Y).

Proposition 4.12. If ν ∈ AFNBS(Y) and φ : (X; ∗, 0) → (Y; ∗́, 0́) be a B-homomorphism of B-algebras, then
φ−1(ν) ∈ AFNBS(X).

Proof. Let x1, x2, x3, x4 ∈ X. Now

φ−1(ν)((x1 ∗ x2) ∗ (x3 ∗ x4)) = ν(φ((x1 ∗ x2) ∗ (x3 ∗ x4))

= ν(φ(x1 ∗ x2) ∗φ(x3 ∗ x4))

= ν((φ(x1) ∗φ(x2)) ∗ (φ(x3) ∗φ(x4)))

⩽ S(ν(φ(x1) ∗φ(x3)),ν(φ(x2) ∗φ(x4)))

= S(ν(φ(x1 ∗ x3)),ν(φ(x2 ∗ x4)))

= S(φ−1(ν)(x1 ∗ x3),φ−1(ν)(x2 ∗ x4))

then
φ−1(ν)((x1 ∗ x2) ∗ (x3 ∗ x4)) ⩽ S(φ−1(ν)(x1 ∗ x3),φ−1(ν)(x2 ∗ x4)).

Therefore φ−1(ν) ∈ AFNBS(X).

5. Conclusion and open problem

In this paper, as using s-norms, we defined and introduced anti fuzzy B-subalgebras and anti fuzzy
normal B-subalgebras and we investigated fundamental properties of them. Next, we investigated the union
and direct sum of them and obtained characterizations of them by using B-homomorphisms of B-algebras.
Now one can introduce anti fuzzy Q-subalgebras and anti fuzzy normal Q-subalgebras and obtain some
results about them as we did for B-subalgebras and this can be an open problem.
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